Eindhoven University of Technology – TU/e

Introduction to the Lattice Boltzmann Method

Course code – 3E100

In spite of its fairly recent development, the lattice Boltzmann method (LBM) has quickly become a popular and yet powerful tool in fluid dynamics and acoustics. Differently from the traditional methods based on the *Continuum* Theory (e.g. finite volumes, finite elements, finite differences, to name but a few), LBM captures the temporal behaviour of a fluid by means of two basic operations on the particle level, namely the propagation and collision of the fluid particles. Some advantages of LBM include its straightforward approach to complex boundary conditions and the facility to be computed in parallel processing schemes. Moreover, LBM is capable of resolving, in a single computational structure, phenomena involving very different scales, such as the interaction between flow and acoustic fields. This seminar will present an introduction to the LBM theory, discuss essential advantages and limitations of the method, and focus on practical applications involving fluid dynamics and acoustic problems. Based on that, the seminar will be structured according to the following schedule:

Week	Date	Торіс	Time	Instructors
1	September 9	Introduction to LBM I: Basics	10:45-12:30	J. Harting
		and background		
2		Introduction to LBM II:	10:45-12:30	J. Harting
	September 16	Boundary conditions,		
		multiphase flow, examples		
3	September 23	LBM-BGK models in	10:45-12:30	A. da Silva
		acoustics		
	September 24	Practical exercise I	8:45-12:30	A. da Silva
4	September 30	Initial and boundary	10:45-12:30	A. da Silva
		conditions for acoustics		
	October 1	Practical exercise II	8:45-12:30	A. da Silva
5	October 7	Applications of LBM in	10:45-12:30	A. da Silva
		aeroacoustic problems		
	October 8	Practical exercise III	8:45-12:30	A. da Silva

Additional Information:

- All theoretical and exercise lectures will be given in room CC2.21 (entrance through Applied Physics Building, N-Laag).
- For the exercise lectures, students are required to bring their own laptop with Matlab installed. Matlab versions 2006a or latter are recommended.
- Msc students participating to the course including the practical exercises will be granted 1ECTS.
- Students should register before August 31 by Email to: Avraham Hirschberg: <u>A.Hirschberg@tue.nl</u> or Jens Herting: <u>Jens@Harting.ws</u>.